Back to Top

6 PhD Scholarships in Mathematics, Korteweg-de Vries Instituut voor Wiskunde (KdV Institute), Netherlands (2018)

Καταληκτική Ημερομηνία: 
Σάββατο, Μάρτιος 31, 2018

The Korteweg-de Vries Instituut voor Wiskunde (KdV Institute) is the mathematical research institute of the Faculty of Science of the Universiteit van Amsterdam. The KdV Institute offers a stimulating scientific environment in which research focuses mainly within the research programmes:

- Algebra, Geometry and Mathematical Physics;
- Pure, Applied and Numerical Analysis, and Stochastics.

It also provides the lecturers and instructors for the mathematics teaching within the Science faculty. The KdV Institute participates in the NWO research clusters GQT, STAR, NDNS+ and DIAMANT and in the Gravity programme NETWORKS. There is formal (and informal) cooperation with the Centrum Wiskunde & Informatica (CWI), the VU University, and with Eurandom in Eindhoven. KdVI counts about 30 staff members and 40 postdocs and PhD students.

Project descriptions

Project 1: Frobenius manifolds and integrable systems
The general topic will involve a number of questions in geometry and mathematical physics coming from the theory of Frobenius manifolds and integrable systems, and their interactions with cohomological field theory, combinatorics, geometry of moduli spaces. More specific topics which will be covered are: relations between Gromov-Witten type invariants and integrable hierarchies; Hamiltonian structures for integrable hierarchies and their deformation theory; infinite dimensional Frobenius manifold theory and integrable hierarchies in higher number of spatial variables; interaction of the Givental group action and the explicit formulation of tau-symmetric integrable hierarchies, in particular their quadratic Hirota equations. Affinity with mathematical physics is a plus.

The student is expected to spend roughly half of the time in Amsterdam and half in Dijon.

Supervisors: Prof. Sergey Shadrin (Universiteit van Amsterdam) and Prof. Guido Carlet (Université de Bourgogne).

Project 2: Lie Algebroids and deformation quantization
Project 2 centers around the theory of Lie algebroids. Lie algebroids are certain geometric objects encoding symmetries, and occur in a wide variety of situations. As such, they can be studied from many different points of view, bringing together techniques from differential/algebraic geometry, representation theory and noncommutative geometry. The aim of this project is to compare these different approaches in the study of representations of Lie algebroids and use the setting of Lie algebroids to explore recent new ideas in the theory of deformation quantization, making a connection to the theory of Frobenius manifolds.

Supervisor: Dr Hessel Posthuma

Project 3: Frobenius manifolds and their relation to homological mirror symmetry
The research topic will be Frobenius manifolds and their relation to homological mirror symmetry. In particular, the candidate will investigate how Frobenius manifolds appear both in the deformation theory and the theory of stability conditions of categories that come from mirror symmetry and tie this to singularity theory and the theory of Riemann surfaces.

Supervisor: Dr Raf Bocklandt.

Project 4: Infinite-dimensional affine and polynomial preserving processes
This project concerns infinite-dimensional SDEs and their practical applications in financial markets. Topics of interest include stochastic partial differential equations, weak approximation, affine stochastic processes, pricing options, energy derivatives, and hedging approaches.
Applicants should have a strong background in analysis and/or probability theory. Ideally speaking the candidate has written an MSc thesis on a topic in stochastic analysis. Furthermore, a profound interest to combine theory with practical applications is expected.

Supervisors: Dr Asma Khedher and Dr Sonja Cox.

Project 5: Zeta functions of the Newton strata of Shimura varieties
The Langlands-Kottwitz method has been developed in order to computer the cohomology of Shimura varieties and to construct many of the Galois representations predicted by the Langlands program. In this project we propose to adapt the Langlands-Kottwitz method to compute the cohomology of Newton strata of Shimura varieties.

Background in algebraic geometry and number theory is required.

Supervisor: Dr Arno Kret.

Project 6: Harmonic analysis on affine symmetric pairs and boundary correlation functions
This project is at the interface of representation theory and theoretical physics. It aims to describe correlation functions for integrable quantum field theories with boundaries using representation theory of quantum affine Lie algebras. Affinity with theoretical physics is a plus.

Supervisors: Prof. Jasper Stokman and Prof. Nicolai Reshetikhin.

The starting date of project is no later than 1 September 2018

- Master degree in Mathematics or related field;
- highly motivated;
- fluent in English, both written and spoken.

Experience in teaching is a plus.

Further details:
6 PhD Scholarships in Mathematics, Korteweg-de Vries Instituut voor Wiskunde (KdV Institute), Netherlands (2018)

Επίπεδο Εκπαίδευσης Υποτροφιών: 
Γεωγραφική Περιοχή: 


Online Εφαρμογές ΔΠΘ

Συγγραφή Βιογραφικού
Σύνταξη Επιχειρηματικού Σχεδίου

Χρησιμοποιήστε τις Online Eφαρμογές που έχει αναπτύξει το Γραφείο Διασύνδεσης Δ.Π.Θ. για

Κοινοποιήστε τις θέσεις εργασίας σας συμπληρώνοντας την φόρμα υποβολής αγγελιών.
Ενημερωθείτε για άρθρα που αφορούν σε άτομα με αναπηρία.


  • Twitter
  • Facebook
  • Linkedin
  • Google+
  • Mixcloud


Συμπληρώστε το e-mail σας και θα λαμβάνετε περιοδικά το Δελτίο Τύπου της Ραδιοφωνικής Εκπομπής "Διασυνδεθείτε".

Παρακαλώ, όσοι διαθέτετε λογαριασμό e-mail του Δ.Π.Θ μην τον χρησιμοποιείτε για την εγγραφή σας στο newsletter της Δομής Απασχόλησης & Σταδιοδρομίας του Δ.Π.Θ.

Σπουδές στο Δ.Π.Θ.

Προγράμματα Μεταπτυχιακών Σπουδών στο Δημοκρίτειο Πανεπιστήμιο Θράκης

Βρείτε πληροφορίες για Προπτυχιακές Σπουδές στο Δ.Π.Θ.

Αναζητήστε μεταπτυχιακά προγράμματα στη βάση δεδομένων του Δ.Π.Θ.

Erasmus Traineeship

Εύρεση Φορέων Erasmus Traineeship

Αναζητήστε φορείς για Erasmus Traineeship

Εντυπο υλικο

Έντυπο υλικό Γραφείου Διασύνδεσης

Μηχανες αναζητησης εργασιας


Βοηθήστε μας να γίνουμε καλύτεροι. Συμμετοχή στη δημοσκόπηση του Γραφείου Διασύνδεσης